
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Lemont, Illinois 60439

Analysis and Correlation of Application I/O Performance
and System-Wide I/O Activity1

Sandeep Madireddy, Prasanna Balaprakash, Philip Carns,
Robert Latham, Robert Ross, Shane Snyder, and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P7036-0417

April 2017

Updates to this preprint may be found at
http://www.mcs.anl.gov/publications

1This material was based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research under Contract No. DE-AC02-
06CH11357.

http://www.mcs.anl.gov/publications

Analysis and Correlation of Application I/O
Performance and System-Wide I/O Activity

Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert Latham,
Robert Ross, Shane Snyder, and Stefan M. Wild

Email: {smadireddy, pbalapra, carns, robl, rross, ssnyder, wild}@mcs.anl.gov
Mathematics and Computer Science Division

Argonne National Laboratory
9700 S. Cass Avenue

Lemont, IL 60439

Abstract—Storage resources in high-performance computing
are shared across all user applications. Consequently, storage
performance can vary markedly, depending not only on an
application’s workload but also on what other activity is con-
currently running across the system. This variability in storage
performance is directly reflected in overall execution time vari-
ability, thus confounding efforts to predict job performance for
scheduling or capacity planning. I/O variability also complicates
the seemingly straightforward process of performance measure-
ment when evaluating application optimizations. In this work we
present a methodology to measure I/O contention with more rigor
than in prior work. We apply statistical techniques to gain insight
from application-level statistics and storage-side logging. We ex-
amine different correlation metrics for relating system workload
to job I/O performance and identify an effective and generally
applicable metric for measuring job I/O performance. We further
demonstrate that the system-wide monitoring granularity can
directly affect the strength of correlation observed. Insufficient
granularity and measurements can hide the correlations between
application I/O performance and system-wide I/O activity.

I. INTRODUCTION

Performance variability, manifested as unpredictability in
application execution time, is an impediment to efficient
resource management and productivity in scientific comput-
ing [1]. I/O performance is one of the most prominent un-
derlying contributors to this execution time variability. High-
performance computing (HPC) storage resources are simul-
taneously shared by a large number of applications, and
I/O behavior in those applications is often characterized by
intense bursts of data access interleaved with intervals of
computation. This mix of bursty, uncoordinated storage system
traffic causes significant fluctuations in the I/O performance
perceived by individual applications. The issue is exacerbated
by growing complexity in I/O architectures that integrate more
diverse and less-well-understood storage technologies in order
to maximize the price/performance ratio.

The problem of I/O performance variability has motivated
numerous research efforts with the objective of mitigating I/O
contention. These efforts, which are summarized in Sec. II,
often focus on application-specific I/O strategies or the nu-
ances of specific computing platforms because no widely
accepted, reusable methodology exists for characterizing vari-
ability across platforms and applications. This gap in our un-

derstanding makes it difficult to consistently detect variability,
attribute the cause, and apply variability-aware optimizations
across diverse environments.

To close this gap in understanding, we have developed
a methodology, including both measurement techniques and
analysis methods, to correlate system-wide I/O activity with
job performance. We have applied this methodology to two
months of production system data collected in a previous
study, focusing on three scientific application groups. Here
we make the following contributions:

• Systematic methodology to obtain associations between
a job’s I/O time and system-wide I/O;

• Job-level I/O performance metric that maximizes corre-
lation accuracy while remaining generally applicable;

• Quantification of the impact of system-level sampling
granularity on performance correlation.

We envision these contributions as important stepping stones
toward more rigorous analysis of I/O performance and its
variability that can be applied to improve scheduling strategies,
dynamically adapt to anticipated workloads, enable more ef-
fective application-level optimizations, and improve our ability
to measure and interpret performance. Our analysis also mo-
tivates future work in I/O instrumentation to better support
these use cases.

The remainder of this paper is organized as follows. In
Sec. III we provide formal definitions of several comple-
mentary empirical metrics for I/O time and system-wide I/O
activity. We focus on three application groups; the charac-
teristics of these applications are reviewed in Sec. IV. We
define the statistical correlation metrics and our methodology
in Sec. V. In Sec. VI we examine the application data by using
this methodology, and we discuss the correlations observed
and demonstrate the effect of measurement granularity on our
results. Section. VII summarizes the conclusions and briefly
discusses avenues for future work.

II. RELATED WORK

Previous studies have quantified I/O variability and its
causes in specific HPC environments. Carns et al. reported
I/O performance variability for seven frequently repeated
production jobs during a two-month period [2]. Their results

suggested that some access patterns are more susceptible to
variability than others, but the root cause of the variability
was not identified. Yildiz et al. performed a systematic study of
I/O interference in a Grid’5000 testbed environment and found
that significant variability often arose from poor flow control
in the I/O path [3]. Uselton et al. applied statistical techniques
to high-fidelity trace events in order to identify anomalous
behavior including causes of I/O variance [4]. Recent studies
have sought to correlate server-side performance logs with
application performance, including metrics to help understand
the I/O intensity and performance of various applications [5],
[6].

One consequence of I/O variability is that it complicates the
quantitative analysis of computer science innovations. Traeger
et al. performed a multiyear study of storage benchmarking
that highlighted frequent use of inadequate statistical methods
when presenting storage research [7], a problem that is exacer-
bated on systems with more performance variance. Hoefler and
Belli described additional challenges in interpreting computer
system variability, including the observation that normal dis-
tributions are rarely seen in computer performance [8]. Studies
that rely on automated methods (e.g., I/O autotuning [9], [10])
employ scalar values such as the minimum of many repetitions
to set performance bounds in the presence of noisy data. Isaila
et al. developed techniques to help address these challenges
in autotuning and modeling by employing hybrid models that
incorporate both analytical and black-box techniques [11].

Other researchers have explored strategies to mitigate I/O
performance variability at the application level in order to im-
prove user experience. Lofstead et al. observed that variability
can arise not only from external interference but also from
interference among the processes within an application [12].
They proposed an adaptive I/O strategy that coordinates I/O
activity within an application according to the relative per-
formance of file system servers. Dorier et al. proposed a
middleware mechanism for coordinating I/O activity across ap-
plications to manage external interference [13]. They evaluated
a collection of strategies that could be used to mitigate poten-
tial interference and evaluated their effectiveness. Isaila et al.
introduced a hierarchy of controllers to enforce global, cross-
layer coordination policies that minimize interference [14].
Son et al. evaluated the use of runtime probing to measure
the performance of file system servers during application exe-
cution as part of a high-level I/O library [15]. This information
was then used to select an optimal subset of storage servers
to write data to.

Previous research in I/O variability has relied on case studies
or architecture-specific features. Formalizing variability detec-
tion and analysis in a way that can be repeated over time and
across platforms remains an open challenge.

III. DATA ACQUISITION AND I/O METRICS

The data for this study was obtained on Intrepid, an IBM
Blue Gene/P system deployed at the Argonne Leadership
Computing Facility (ALCF) from 2007 to 2013. The data
collection methods are described in [2], and an anonymized

copy of the data is publicly available as part of the ALCF I/O
data repository [16].

Application-side I/O information was obtained by using
Darshan [2], a lightweight I/O characterization tool that was
deployed on Intrepid. Among the data instrumented by Dar-
shan are high-level job details and a compact set of counters,
timers, and timestamps describing the I/O workload for each
file accessed by the application. The total run time for a job
(�J) is easily calculated as the difference between the job
start and end timestamps provided by Darshan. To quantify job
I/O performance, Darshan decomposes general job I/O activity
into activity involving shared files (files that were opened by
all MPI processes) and unique files (files that were opened
only by a subset of MPI processes). The I/O time for unique
files (�U) is calculated as the sum of the total time taken to
do metadata operations (�U

M) and the time taken to perform
read and write operations (�U

RW) by the slowest rank of all
processes involved in I/O. The I/O time for the shared files
(�S) is calculated as the difference between the timestamps of
the first file open of any shared file and the last I/O done on
any shared file1. Darshan thus reports the total time spent by
a job on I/O as

� = �U + �S = �U
M + �U

RW + �S . (1)

Storage-system-side information on Intrepid was obtained
by using the iostat command-line tool included with the
Sysstat collection of utilities [17]. The iostat tool reports the
total system-wide read and write bandwidth as well as the
number of read and write operations that are requested; this
data is collected at the block device level on each storage
server, with output reported over 60-second intervals. This data
is summed across all storage servers for each interval and
referred to as “system-wide I/O” in the subsequent sections
because it represents an aggregate view of all I/O traffic on
the storage system, regardless of how many applications were
running. This iostat data was collected for Intrepid’s two large
parallel scratch file systems; system-side monitoring was not
enabled for other shared file systems (including the home file
system) that may have been accessed by a job on Intrepid. This
data was collected over consecutive days from January 23 to
March 26, 2010, with the exception of four days in February
when the data was lost because of an administrative error.

The amount of system-wide activity happening during a
particular job can be estimated by calculating the amount of
system-wide I/O that occurred between the start and end of
the job. We now formalize this concept. We let � denote the
granularity (in seconds) of the system-wide I/O measurement
(i.e., 60 seconds for the iostat data). We let Tstart and
Tend denote the start and end times (in seconds) of a job,
respectively, and take T1, . . . , Tn�1 to be the iostat output
timestamps between the job’s start and end times:

T0  Tstart < T1 = T0 + � < . . . < Tn�1 < Tend  Tn.

1Subsequent versions of Darshan introduced a more direct measurement
of I/O time for shared files, but it was not available when this data set was
collected.

!"# !$# !%# !&#!&'"#

!(!) !*'$

−

,- ,$," …,% ,*,*'"…

,/0120 ,/0120# ,345# ,345

File	1 File	2 File	3

!-

Sy
st
em

-w
id
e	
re
ad
/s

Time	stamp

!"
!$!% !*'" !*

∆

∆ − 77

,"# ,&#
,*'$

,$# − … ,&'"#,-#

Fig. 1. Illustration of the calculation of the metrics R and D
R .

For i = 0, . . . , n, we let Ri and Wi denote, respectively, the
system-wide read and write bandwidths reported at the end of
interval i (i.e., at time Ti). Similarly, we take RO

i and WO
i to

denote, respectively, the number of read and write operations
reported at time Ti.

Since we cannot obtain system-wide information at a granu-
larity finer than �, we perform linear interpolation and allocate
the system-wide activity during the first and last iostat intervals
according to the proportion of each interval for which the job
was active; see Fig. 1 for an illustration. Hence, we estimate
the total system-wide read and write volumes by

 R = �
nX

i=1

Ri � (Tstart � T0) R1 � (Tn � Tend) Rn

 W = �
nX

i=1

Wi � (Tstart � T0) W1 � (Tn � Tend) Wn.

(2)
Similar expressions are used to estimate the number of system-
wide operations:

 O
R =

nX

i=1

RO
i � Tstart � T0

�
RO

1 � Tn � Tend

�
RO

n

 O
W =

nX

i=1

WO
i � Tstart � T0

�
WO

1 � Tn � Tend

�
WO

n .

(3)

Within a job, Darshan also captures information at an
individual file level. For each file, the timestamps correspond-
ing to the first and last read (write) operations, the amount
of data read (written), and the corresponding file system
mount point are each captured. This potentially finer-grained
information allows one to consider only those iostat intervals
in which a read/write occurs. Formally, we let TD

start and
TD

end denote the times of the first and last I/O (i.e., read or
write) operation for the job, respectively. By TD

1 , . . . , TD
m

we denote the (possibly nonconsecutive) iostat timestamps
at the end of an iostat interval for which Darshan recorded
some I/O activity for the job. TD

0 denotes the timestamp of
the end of interval immediately before TD

1 . We also let RD
i

and WD
i denote, respectively, the system-wide read and write

bandwidths reported at iostat timestamp TD
i . A pair of volume

estimates that uses this potentially smaller/nonconsecutive set

TABLE I
I/O CHARACTERISTICS FOR THE APPLICATION GROUPS CONSIDERED

WITH I/O ON ALL FILES SYSTEMS (I/O on file systems monitored by iostat)
(⇤ DENOTES THAT THE SHARED FILE PERFORMS NO I/O).

App. Procs Unique Shared Read Write Samples
Files Files (GiB) (GiB)

ESB 4096 57346 3 938.7 1.7 173
14338 — 234.8 0.5

NPC 4096 10808 1 791.1 326.8 724
2744 — 195.3 81.7

NPB 4096 3 1⇤ 4.3 1.1e-04 406
1 — 4.3 —

TABLE II
MEAN (standard deviation) OF I/O TIME METRICS.

App. �U
M �U

RW �S �D �F
R �F

W �J

ESB 1163.2 65.5 0.4 1171.9 137.8 1.2 1517.7
214.1 20.0 0.1 191.4 13.1 3.8 287.5

NPC 149.5 274.4 28.5 3522.3 2628.4 248.1 3738.8
132.4 41.1 4.8 302.1 244.8 54.0 334.3

NPB 0.4 23.8 — 1653.3 183.7 1290.8 2117.1
0.6 63.7 — 74.8 8.9 63.1 63.6

of iostat intervals is then

 D
R = �

mX

i=1

RD
i �

�
TD

start � TD
0

�
RD

1 �
�
TD

m � TD
end

�
RD

m

 D
W = �

mX

i=1

WD
i �

�
TD

start � TD
0

�
WD

1 �
�
TD

m � TD
end

�
WD

m .

(4)
A corresponding I/O time estimate accounts for the m iostat
intervals during which Darshan logged I/O activity:

�D = m�. (5)

An analogous set of metrics is defined for the case where
only the files stored on file systems monitored by iostat are
considered. The respective measures for system-wide read and
write volume are I

R and I
W , and the I/O time metric is

denoted by �I .
The time spent performing reads (writes) for each file

within a job can be estimated from the difference between
the timestamps of the first and last read (write) reported by
Darshan. For a file f we denote these read and write times
by �f

R and �f
W , respectively. Another metric we explore is the

maximum time over all files in the job:

�F
R = max

f
�f

R

�F
W = max

f
�f

W .
(6)

IV. APPLICATION GROUP PROPERTIES

The application groups used in this paper are from [2], in
which the jobs monitored by Darshan are grouped based on
the number of files, number of processors, amount of data read
and written, and user ID. Since only 27% of the jobs running
on Intrepid had Darshan logging enabled during the period
under consideration, we focus on three application groups with
ample Darshan data—Earth Science B (ESB), Nuclear Physics
C (NPC), and Nuclear Physics B (NPB), respectively consisting

Fig. 2. Histograms of the I/O time �D for each application group; the solid
line locates the mean and the dashed lines highlight 1.645 standard deviations
on either side of the mean.

of 173, 724, and 406 jobs2—that have the same values for the
features used in grouping; see Table I. All three groups are
read heavy, with relatively small contributions from shared
files. Although the jobs within an application group share the
I/O feature values in Table I, the time the jobs use for I/O
varies greatly within a group. Table II shows the means and
standard deviations for the I/O metrics described in Sec. III,
while Fig. 2 shows that the distributions of times (in this case,
�D) also exhibit significant skew. The solid red lines indicate
the mean, and the dashed lines indicate mean ±1.645 standard
deviations, which were the measures of variability used in [2].

The ESB jobs perform I/O on 57,346 unique files and have
a high mean metadata time (�̄U

M = 1163.2 s) relative to the
mean read/write time (�̄U

RW = 65.5 s) and mean run time
(�̄J = 1517.7 s). A file-level view of the file activity during
an example ESB job is shown in Fig. 3. We observe that the
read operations occur in the first few seconds (about 1/15 of
the duration of the job’s I/O time with the value of �F

R being
120 s), while the writes are concentrated toward the end of
the job (with �F

W of 0.25 s). Since the file-level times tend to
be small relative to the 60-second iostat intervals, we expect
that the file-based system-wide volume measure D will give
a more accurate view of the system-wide I/O traffic that could

2The number of jobs differs slightly from the values reported in [2] because
jobs were removed during periods when system-wide I/O volume information
was missing (e.g., because the jobs ran outside the window in which data was
collected or during the period when data was lost in February).

Fig. 3. File-level I/O activity from the start of an ESB job; there are 16,387
files with �f

R > 0 and 32,770 files with �f
W > 0.

Fig. 4. File-level I/O activity from the start of an NPC job; there are 10,753
files with �f

R > 0 and 4,096 files with �f
W > 0.

interfere with this job than will the solely iostat-based measure
 .

For NPC, the large number (10,808) of unique files associ-
ated with I/O results in a high value for the mean metadata
time (�̄U

M = 149.5 s). However, the value of �̄U
RW dominates

�̄U
M and �̄S for this application group; thus, a job’s slowest

process spent more time on I/O operations involving unique
files than it spent on metadata operations. The file-level view
of an example NPC job in Fig. 4 shows that many files have
large �f

R and �f
W values and cover many 60-second iostat

intervals. In this case, the file-based metric D is unlikely to
have significantly more information than the iostat metric
has. This situation is also present for NPB, where the only two
files with significant I/O activity, one with �f

R = 186 s and
one with �f

W = 1288 s (see Fig. 5), cover several 60-second
iostat intervals.

We note that for ESB and NPC only 25% of the total files
(approximately 25% of the total I/O volume) were accessed on
the two file systems monitored by iostat. For NPB, however,

Fig. 5. File-level I/O activity from the start of an NPB job; there are 2 files
with �f

R > 0 and 1 file with �f
W > 0.

only one file is involved in I/O on file systems monitored by
iostat, and this file accounts for the bulk of the I/O volume.

V. METHODOLOGY

We model the I/O time of a job z on a given platform by

�z = g(⌘z, ⌫z, �z), (7)

where ⌘z is the volume of I/O generated by the job, ⌫z is the
volume of system-wide I/O during job z that does not include
⌘z , and �z represents factors that can impact �z but that remain
unchanged, uncontrolled, and/or unobserved. These factors can
include the effects of routing algorithms, network congestion,
disk contention, and shared resources. Another factor can be
the system-wide I/O on the file systems where monitoring
was not present but can affect the application I/O performance
through network resource sharing. Given an application group,
⌘z is constant across all jobs. Therefore, the factors that cause
the observed I/O variability are ⌫z , �z , and our ability to
measure each of the quantities. In what follows, we describe
a systematic methodology that uses data

{(�zk
, zk

) : k = 1, . . . , d} (8)

from d jobs of a selected application group to quantify
connections between ⌫z and �z .

A. I/O time variability and system-wide I/O traffic

As discussed in Sec. III, it can be difficult to obtain exact
starting and ending points for I/O and thus difficult to separate
⌘z and ⌫z . For this reason, we primarily use the model

�z = g(z, �z), (9)

where z = ⌘z + ⌫z denotes the total volume of system-wide
I/O during the lifetime of the job; see Sec. III. Since ⌘z is
constant for a given application group, a relationship between
 z and �z implies that �z is affected by ⌫z . Customary ways
of measuring the relationship between two observed variables
include correlation analysis (using both linear and nonlinear
correlation methods) and model-based approaches.

1) Linear correlation: Linear correlation between two vari-
ables is typically measured by the Pearson product-moment
correlation. Based on a line of best fit through the observed
values, the Pearson correlation coefficient, [�1  ⇢  1], is a
normalized measure of how far away the data points are from
this line. Values of ⇢ greater (less) than 0 indicate a positive
(negative) association, and |⇢| = 1 indicates a perfect linear
association. We note that values of ⇢ close to zero do not
necessarily indicate that the variables are independent since a
nonlinear association may instead exist.

2) Nonlinear correlation: Nonlinearity can come in many
forms, and no single method will be robust enough to detect all
possible nonlinear relationships between two variables. There-
fore, we consider several methods for identifying nonlinear
association between two variables.

Spearman’s rank correlation coefficient (r) determines the
strength and direction of the monotonic relationship between
two variables rather than the strength and direction of the
linear relationship as given by Pearson’s correlation coef-
ficient. In a monotonic increasing (decreasing) relationship,
one variable increases (decreases) as the other increases; such
a relationship is nonlinear whenever the rate of increase
(decrease) is not constant. The Spearman coefficient satisfies
�1  r  1, and its interpretation of correlation strength
is similar to the Pearson coefficient. Since it works with the
ranks of the observations, however, the Spearman coefficient
is less sensitive than the Pearson coefficient to outliers.

Distance correlation (R) treats two variables as random
variables and computes a statistical distance between the
empirical probability distributions of the two variables. The
distance correlation also satisfies 0  R  1; unlike the
previous measures, R = 0 if and only if �z and z are
independent.

Mutual information score (I) measures the amount of
information shared between �z and z and how much the
uncertainty about one variable is reduced by knowing the other
variable [18]. We use a normed mutual information score that
satisfies 0  I  1, where 1 indicates strong correlation and
0 indicates no correlation.

3) Model-based approach: The model-based approach
(also called regression) is a class of supervised learning
methods in which one uses an algorithm to estimate a func-
tional form for the relationship between �z and z . One
such algorithm used for regression is random forest, which
is popular in the machine learning community [19]. It builds
a number of decision trees, where each tree is obtained by
using a random subset of the original dataset and splitting the
input space recursively into a number of hyperrectangles. The
obtained rectangles contain the input values that have similar
outputs. The average of the outputs within a hyperrectangle is
then assigned as the value for that hyperrectangle. Each tree
follows an if-else rule and returns the constant value at the leaf
as the predicted value for a new point x⇤; the random forest
output value at this point is the mean of all values predicted
by the trees.

TABLE III
CORRELATION METRICS WITH I/O TIME (�D).

ESB NPC NPB
 D

R D
W D

R D
W D

R D
W

Pearson 0.55 0.42 0.19 0.23 -0.05 0.04
Spearman 0.42 0.53 0.14 0.35 -0.02 -0.02
Dist. corr. 0.55 0.45 0.16 0.30 0.06 0.05

Mutual info. 0.64 0.51 0.30 0.54 <1.0e-16 <1.0e-16

B. I/O time variability and unknown factors

The factors in �z typically cannot be measured or modeled
directly; furthermore, our observations (z, �z) are subject
to other sources of measurement error. Therefore, we model
 z and �z as random variables; and we analyze the joint
probability density function (PDF) f(�z, z), which is a
statistical measure that captures the likelihood of the pair
of events (�z, z) occurring together. One can also obtain
conditional densities such as f(�z| z =), which is the
probability distribution of �z when z is fixed to a particular
value . Conditional densities can be used for estimating
quantities such as the mean, median, and uncertainty of �z

as a function of z .
Kernel density estimation (KDE) is a method for approxi-

mating f(�z, z). It is essentially a data-smoothing approach
in which the contribution of each observed data point is
smoothed over a local neighborhood of that data point. The
contribution of the data point (�zk

, zk
) to the kernel density

estimate at a generic point (�,) depends on the proximity
of these two points. The extent of this contribution depends
on the shape of the kernel function and an associated kernel
bandwidth parameter. Here we use the standard Gaussian ker-
nel function and the kernel bandwidth obtained by minimizing
the asymptotic mean integrated squared error [20].

VI. RESULTS AND DISCUSSIONS

We now apply the methods described in Sec. V to the
ESB, NPC, and NPB application groups. We first examine the
original data (obtained from a 60-second iostat measurement
granularity) and then test the effect of changing this measure-
ment granularity.

A. System-wide I/O at 60-second iostat measurement granu-
larity

1) Correlation measures for association between I/O time
(�D) and system-wide I/O (D): The results for ESB in
Table III indicate moderately strong linear and monotonic
correlations based on the values of Pearson’s and Spearman’s
coefficients. The large value for the distance correlation metric
indicates that the I/O time is not independent of the system-
wide I/O. The higher value of mutual information as compared
with the Pearson coefficient indicates a nonlinear correlation
between the I/O time and system-wide I/O.

Similar analysis for NPC shows that the correlation between
I/O time and the system-wide I/O is smaller than the corre-
sponding values for ESB. As indicated by all the correlation
metrics, �D has a higher correlation with D

W than with
 D

R . The high value for the Spearman coefficient and mutual

information compared with the Pearson coefficient indicates
that the association between the quantities is highly nonlinear.
The distance correlation values indicate that I/O time is not
independent of the system-wide reads and writes.

The correlation between I/O time and the system-wide I/O
for NPB is the smallest among the three application groups
and close to zero for all the correlation metrics. The distance
correlation values indicate that I/O time for this application
group is close to being independent of the system-wide reads
and writes.

These observations indicate that the I/O time is strongly
correlated with the system-wide I/O (reads and writes) for
the ESB application group with the nonlinear association.
The correlation is also nonlinear but milder for NPC. For
NPB, however, correlation is practically nonexistent and shows
evidence of statistical independence between them.

2) Correlation measures for association between I/O time
(�I) and system-wide I/O (I): If we consider only the files
located on monitored file systems (i.e., the two scratch file
systems and not user home directories), then the correlations
for ESB, NPC, and NPBfollow the same pattern observed in the
preceding subsection but with a slight reduction in the strength
of correlation. This result is somewhat counterintuitive, be-
cause we would not expect access activity on the monitored
file systems to perturb performance for other resources. One
possible explanation is that although the other file systems
on Intrepid are provisioned to use separate storage servers
and disk drives, they still share a common storage system
network. High volumes of traffic on the unmonitored file
systems can thus perturb I/O performance on the monitored file
systems as a result of network resource sharing. This suggests
that correlation strength could be improved beyond what
we observe between �D and D by incorporating system-
wide I/O traffic on all the file systems that share network
resources or by incorporating direct instrumentation of the
shared network resources themselves.

3) Correlation measures for association between metadata
time (�U

M) and number of system-wide I/O operations (�O):
We also study the correlation between the metadata time �U

M

and the system-wide I/O metrics based on the number of I/O
operation counts (�O

R and O
W). The correlation metric values

shown in Table IV consistently indicate a strong correlation
for ESB. For this application group, however, �U

M has a higher
correlation with O

R than with �O
W , which can be attributed

to the fact that ESB reads from 16, 387 files in less than 240
seconds, thus generating a significant burst of metadata traffic.
For NPC and NPB, �U

M shows a nonlinear correlation with O
R

and �O
W which is smaller than the corresponding values for

ESB. This can be attributed to the fact that both the read and
write activities involve file accesses that are more spread out
temporally.

4) Model-based method for association between I/O time
(�D) and system-wide I/O (D): The random forest model
is used to obtain the functional relationships �D = f(D

R)
and �D = f(D

W) shown in Fig. 6. The trend of this
functional relationship is seen to be nonlinear and monotonic,

TABLE IV
CORRELATION METRICS WITH METADATA TIME (�U

M).

ESB NPC NPB
�O

R O
W �O

R O
W �O

R O
W

Pearson 0.74 0.65 0.44 0.53 0.45 0.39
Spearman 0.80 0.75 0.58 0.67 0.61 0.57
Dist. corr. 0.79 0.74 0.52 0.62 0.57 0.50

Mutual info. 0.84 0.78 0.64 0.68 0.58 0.54

Fig. 6. Association between I/O time and system-wide I/O for ESB obtained
using random forest.

which is consistent with the correlation metrics; however, it
also provides additional information beyond the single value
reported by the correlation metrics, such as the ability to
predict the value of I/O time at a system-wide I/O value of
interest.

Similar analysis for NPC and NPB showed similar results
consistent with the correlation metrics, but the plots are not
reported for brevity.

5) KDE-based approach for association between I/O time
(�D) and system-wide I/O (D): The PDF of the I/O time and
the system-wide reads and writes for ESB obtained by using
the KDE are shown in Fig. 7. The figure shows the contours of
equal probability, where hotter colors indicate the regions with
higher probability and the transition to cooler colors represents
the decrease in probability. The solid white line indicates the
median of �D as a function of D

R (or D
W), and the white

dotted line indicates the intervals that contain the central 90%
of the probability mass (henceforth, the “credible intervals”).
The solid red line indicates the mean, and the dashed lines
indicate the mean ± 1.645⇥standard deviations (which can be
interpreted as containing 90% of the probability mass for �D

when ignoring its dependence on system-wide I/O).
This approach gives us information about the conditional

Fig. 7. KDE of the joint probability density for ESB shown as contours of
equal probability (red=max, blue=min). The solid white line is the median,
and the white dashed lines are the 90% credible intervals of �D as a function
of D

R , D
W . The red solid (dashed) line represents the mean (mean±1.645⇥

the standard deviation) of �D ignoring its dependence on system-wide I/O.

probability distribution of the I/O time (�D) at a particular
system-wide I/O value (e.g., f(�D| D

R = 300 GiB) for
system-wide read volume), which can be used to obtain the
median value and 90% credible intervals for �D when D

R

(or D
W) is fixed to a specific value (e.g., D

R = 300 GiB).
Repeating this exercise for various values of D

R gives the
median response and 90% credible intervals of �D as a
function of D

R .
The median response validates the moderately high positive

correlation metrics obtained earlier, and this response is seen
to be qualitatively similar to the random forest model response.
We note that although the median of I/O time for ESB
increases with the increase in the system-wide activity, the
variability remains relatively constant, except in the regions
of high system-wide activity where the data coverage is less.
Also, the variability given by width of the 90% credible
intervals is slightly smaller than the interval width (distance
between the red dotted lines). This indicates that the I/O
variability is slightly reduced when accounting for changes
due to the system-wide activity.

The joint PDF models for NPC in Fig. 8 show that the
median of �D with respect to D

R and D
W increases steadily;

however, it is more prominent in the latter case. This obser-
vation is consistent with the correlation metrics that show the
existence of nonlinear and higher correlation between �D and
 D

W .
Similarly, for NPB the median I/O time does not change with

Fig. 8. Kernel density estimate plots for NPC (refer to caption of Fig. 7 for
detailed description).

the system-wide I/O, a result that agrees with the correlation
measures that indicate minimal correlation between the I/O
time and the system-wide I/O.

The change in the I/O time (�D) with the system-wide
I/O metrics (D

R or D
W) behaves differently for the three

application groups, as demonstrated by the results above. This
behavior can be attributed to the inherent I/O characteristics of
the job and the ability of the I/O time metrics to identify the
time durations in which the job is performing I/O. Also, the
file-server-side measurement granularity should be close to the
smallest time interval in which contiguous I/O occurs. These
criteria are well met for ESB, where the read I/O happens
contiguously and in a short duration and, although the writes
are more spread, they are contiguous and concentrated to the
end. For this reason, we see a moderately high correlation
for this application group. For NPC, there are fewer small,
contiguous I/O and some large files where the location of exact
I/O is not apparent. Thus, we see a decrease in the correlation
measures compared with those of ESB. The NPB application
group is an extreme case in which there are few but long
files and the Darshan measure for time spent in doing read
and write (�U

RW) is significantly less than the duration of the
individual files. Hence this application group shows smaller
correlation than the other two groups do.

B. Effect of the iostat measurement granularity on the corre-
lation metrics

The system-wide I/O metrics (z) used in this study
(D

R , D
W , O

R , O
W) depend on the ability to identify the exact

intervals (TD
1 , . . . , TD

m�1) in which the I/O was performed
by the application. The closer the actual I/O time inside the

Fig. 9. Effect of iostat measurement granularity on number of iostat intervals
used to calculate �D .

interval gets to the length of the interval, the more accurate
the system-wide I/O gets. That is, the ratio of the I/O time in
an interval to the length of the interval (granularity �) ideally
should be close to 1. Increasing the granularity to a higher
value will reduce the the observed correlations, however high
they might be. This behavior is demonstrated in this study
by synthetically coarsening the iostat data by merging the
information in multiple intervals, which is equivalent to taking
measurements at a lower frequency.

Let the new granularity be �k = k ⇥�, for k = 1, 2,
This choice changes the number of iostat intervals that fall
inside the time duration of a job (n) and the number of
iostat intervals involving I/O (m) and subsequently the metrics
 D

R , D
W , N

R , and N
R .

The granularity of the interval length �k is increased from
60 to 1200 s, which corresponds to an increase in k from
1 to 20. The change in the number of iostat intervals used
to calculate �D with this increase in granularity for all three
application groups is shown in Fig. 9.

Figure 10 show that although the correlation between the
job I/O time metric (�D) and the system-wide I/O metrics
(D

R , D
W) is high for ESB at a 60-second granularity, this

correlation decreases steadily with the increase in granular-
ity. This behavior is true for both the linear and nonlinear
correlation metrics considered in this study. Similar behavior
is observed for the other groups, with lower values of the
correlation coefficients (Fig. 11).

A similar study of the correlation between the metadata
time for ESB (�U

M) and the system-wide I/O metrics (O
R , O

W)
shows a high correlation at the 60-second granularity, which
also decreases steadily to a small correlation value (Fig. 12).

This behavior further signifies the importance of making the
file-server-side measurements at a sufficiently fine granularity
(relative to the I/O timescale for the particular job) so that the
correlations in the job I/O time and the state of the file server
can be identified reliably where they exist.

We note that those jobs for which Darshan logging was

Fig. 10. Effect of iostat measurement granularity on correlation between �D

and D for ESB.

Fig. 11. Effect of iostat measurement granularity on Spearman correlation
between �D and D for all three application groups.

Fig. 12. Effect of iostat measurement granularity on correlation between �U
M ,

 O
R for ESB.

Fig. 13. Normalized system-wide I/O as measured by iostat (blue) and
aggregate of available Darshan logs (red).

enabled accounted for 61% of the I/O volume recorded by
iostat (7.8 PiB). Figure 13 shows the system-wide I/O volume
measured by iostat and the aggregate I/O volume for the
jobs logged by Darshan (with both volumes normalized by
their respective maximum) and shows that the general trend is
consistent among the two sources. With improved Darshan
coverage, one would also have the prospect of using the
system-wide Darshan logs to inform a system-wide I/O metric
with a potentially finer temporal resolution. Such information
could complement server-side information (e.g., from iostat).

VII. CONCLUSIONS

We developed several I/O metrics and systematically applied
statistical methods to analyze the relationship between a job’s
I/O time and the system-wide I/O traffic observed on the
storage server. We applied our methodology to quantify the
variability of the I/O time due to factors that cannot be mea-
sured or modeled directly, and we examined the relationship
of this variability as a function of the system-wide I/O. We
highlighted the importance of using appropriate measures (e.g.,
of the job I/O time and system-wide I/O) and correlation
metrics when examining such relationships. We illustrated that
the granularity in which I/O activities are measured is crucial
for establishing a relationship between I/O time and system-
wide I/O activity.

For the ESB application group, we found that I/O time is
correlated with the system-wide reads and writes and that the
I/O time variance remains relatively constant as the system-
wide I/O changes. By accounting for the effect of system-
wide I/O, the I/O variability due to unobserved factors is
reduced relative to when this effect is not included. We
found mild correlations for NPC and a behavior similar to
ESB’s for the variability. In contrast, minimal correlation and
near-probabilistic independence between the I/O time and the
system-wide I/O was observed for NPB at the measurement
granularity available. These findings confirm the existence of

correlations between application I/O performance and system-
wide I/O activity, but the nature of these correlations is not
universal across all applications on the system. Real-world
applications exhibit a diverse range of I/O strategies, and
the relationship between application performance and storage
system traffic differs according to each application’s access
pattern and I/O intensity.

Our results also highlight the importance of selecting ap-
propriate metrics for I/O time. Application I/O time should
be represented by discrete access time intervals for individual
files, as shown in Eq. (5), rather than a single scalar value,
in order to minimize noise from other phases of execution.
System-wide metrics can be aligned with file I/O intervals
by using linear interpolation to approximate data volumes in
cases where the application monitoring granularity and storage
system monitoring granularity do not match. Our evaluation
of the impact of increased server-side sampling granularity
suggests that the true correlations on today’s I/O systems
are likely stronger than those that can be calculated based
on available measurements. To better understand and act on
additional sources of I/O time variability, one would have to
strike a balance between how much data to capture and how
frequently, and the associated overhead of such measurement.

One of the challenges in this work was that the data
presents an incomplete view of the application and server
side. The ability to find higher correlations by using the
method proposed in this work can be improved by improving
server-side data measurement granularity; monitoring network
resource utilization and sharing; monitoring server-side I/O on
other file systems; and/or increasing the application coverage
by Darshan. We plan to examine the degree to which finer-
granularity I/O subsystem information could inform predic-
tions for jobs with shorter I/O phases than considered here.

Although we focused on correlations, our approach can be
easily extended to build models of I/O time that can be used
to predict I/O time at system-wide I/O values of interest.
Of particular interest is examining the effect of the number
and diversity of samples on the predictive capability (that
is, answering how many and under what types of system
conditions, runs are needed in order to get a meaningful
predictive model). This kind of analysis is readily extended
to other file systems, such as Lustre, which require different
(or more) server-side I/O metrics in order to analyze the
interaction between system-wide I/O and application I/O time.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Contract DE-AC02-
06CH11357.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] D. Skinner and W. Kramer, “Understanding the causes of performance
variability in HPC workloads,” in IEEE Workload Characterization
Symposium, Oct. 2005, pp. 137–149.

[2] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” Trans. Storage, vol. 7,
no. 3, pp. 8:1–8:26, Oct. 2011.

[3] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the
root causes of cross-application I/O interference in HPC storage sys-
tems,” in 2016 IEEE International Parallel and Distributed Processing
Symposium. IEEE, May 2016, pp. 750–759.

[4] A. Uselton, M. Hawison, N. Wright, D. Skinner, J. Shalf, L. Oliker,
N. Keen, and K. Karavanic, “Parallel I/O performance: From events
to ensembles,” in 24th IEEE International Parallel and Distributed
Processing Symposium, 2010.

[5] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Server-side log
data analytics for I/O workload characterization and coordination on
large shared storage systems,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2016,
pp. 819–829.

[6] S. E. Sayed, M. Bolten, D. Pleiter, and W. Frings, “Parallel I/O
characterisation based on server-side performance counters,” in Joint
International Workshop on Parallel Data Storage and Data Intensive
Scalable Computing Systems (PDSW-DISCS), Nov. 2016, pp. 7–12.

[7] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year study
of file system and storage benchmarking,” Trans. Storage, vol. 4, no. 2,
pp. 5:1–5:56, May 2008.

[8] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. 2015, pp. 73:1–73:12.

[9] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, “Taming parallel I/O complexity with auto-
tuning,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2013, pp. 1–12.

[10] B. Behzad, S. Byna, S. M. Wild, Prabhat, and M. Snir, “Dynamic model-
driven parallel I/O performance tuning,” in 2015 IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2015, pp. 184–193.

[11] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross,
and P. Hovland, “Collective I/O tuning using analytical and machine
learning models,” in 2015 IEEE International Conference on Cluster
Computing (CLUSTER), Sep. 2015, pp. 128–137.

[12] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the IO performance
of petascale storage systems,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2010.
IEEE, 2010, pp. 1–12.

[13] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in 28th International Parallel and Distributed Processing
Symposium. IEEE, 2014, pp. 155–164.

[14] F. Isaila, J. Carretero, and R. B. Ross, “CLARISSE: A middleware for
data-staging coordination and control on large-scale HPC platforms,” in
IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid
Computing, (CCGrid 2016). IEEE Computer Society, May 2016, pp.
346–355.

[15] S. W. Son, S. Sehrish, W.-k. Liao, R. Oldfield, and A. Choudhary,
“Reducing I/O variability using dynamic I/O path characterization in
petascale storage systems,” Journal of Supercomputing, pp. 1–29, 2016.

[16] P. Carns, “ALCF I/O data repository,” Argonne National Laboratory,
Technical Memorandum ANL/ALCF/TM-13/1, 2013.

[17] S. Godard, “Sysstat utilities home page,” 2010. [Online]. Available:
http://www.sebastien.godard.pagesperso-orange.fr/

[18] S. Khan, S. Bandyopadhyay, A. R. Ganguly, S. Saigal, D. J. Erickson III,
V. Protopopescu, and G. Ostrouchov, “Relative performance of mutual
information estimation methods for quantifying the dependence among
short and noisy data,” Phys. Rev. E, vol. 76, no. 2, p. 026209, 2007.

[19] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[20] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and
Semiparametric Models. Springer Science & Business Media, 2012.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE
Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

